Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 158: 108711, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38626620

RESUMO

Addressing the simultaneous removal of multiple coexisting groundwater contaminants poses a significant challenge, primarily because of their different physicochemical properties. Indeed, different chemical compounds may necessitate establishing distinct, and sometimes conflicting, (bio)degradation and/or removal pathways. In this work, we investigated the concomitant anaerobic treatment of toluene and copper in a single-chamber bioelectrochemical cell with a potential difference of 1 V applied between the anode and the cathode. As a result, the electric current generated by the bioelectrocatalytic oxidation of toluene at the anode caused the abiotic reduction and precipitation of copper at the cathode, until the complete removal of both contaminants was achieved. Open circuit potential (OCP) experiments confirmed that the removal of copper and toluene was primarily associated with polarization. Analogously, abiotic experiments, at an applied potential of 1 V, confirmed that neither toluene was oxidized nor copper was reduced in the absence of microbial activity. At the end of each experiment, both electrodes were characterized by means of a comprehensive suite of chemical and microbiological analyses, evidencing a highly selected microbial community competent in the biodegradation of toluene in the anodic biofilm, and a uniform electrodeposition of spherical Cu2O nanoparticles over the cathode surface.

2.
J Hazard Mater ; 469: 133878, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447365

RESUMO

Microbial reductive dechlorination of organohalogenated pollutants is often limited by the scarcity of electron donors, that can be overcome with microbial electrochemical technologies (METs). In this study, polarized electrodes buried in marine sediment microcosms were investigated to stimulate PCB reductive dechlorination under potentiostatic (-0.7 V vs Ag/AgCl) and galvanostatic conditions (0.025 mA·cm-2-0.05 mA·cm-2), using graphite rod as cathode and iron plate as sacrificial anode. A single circuit and a novel two antiparallel circuits configuration (2AP) were investigated. Single circuit polarization impacted the sediment pH and redox potential (ORP) proportionally to the intensity of the electrical input and inhibited PCB reductive dechlorination. The effects on the sediment's pH and ORP, along with the inhibition of PCB reductive dechlorination, were mitigated in the 2AP system. Electrodes polarization stimulated sulfate-reduction and promoted the enrichment of bacterial clades potentially involved in sulfate-reduction as well as in sulfur oxidation. This suggested the electrons provided were consumed by competitors of organohalide respiring bacteria and specifically sequestered by sulfur cycling, which may represent the main factor limiting the applicability of METs for stimulating PCB reductive dechlorination in marine sediments.


Assuntos
Microbiota , Bifenilos Policlorados , Bifenilos Policlorados/análise , Biodegradação Ambiental , Bactérias , Sedimentos Geológicos/microbiologia , Eletrodos , Sulfatos , Enxofre , Cloro
3.
Microorganisms ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38004793

RESUMO

Marine sediments act as a sink for the accumulation of various organic contaminants such as polychlorobiphenyls (PCBs). These contaminants affect the composition and activity of microbial communities, particularly favoring those capable of thriving from their biodegradation and biotransformation under favorable conditions. Hence, contaminated environments represent a valuable biological resource for the exploration and cultivation of microorganisms with bioremediation potential. In this study, we successfully cultivated microbial consortia with the capacity for PCB removal under both aerobic and anaerobic conditions. The source of these consortia was a multicontaminated marine sediment collected from the Mar Piccolo (Taranto, Italy), one of Europe's most heavily polluted sites. High-throughput sequencing was employed to investigate the dynamics of the bacterial community of the marine sediment sample, revealing distinct and divergent selection patterns depending on the imposed reductive or oxidative conditions. The aerobic incubation resulted in the rapid selection of bacteria specialized in oxidative pathways for hydrocarbon transformation, leading to the isolation of Marinobacter salinus and Rhodococcus cerastii species, also known for their involvement in aerobic polycyclic aromatic hydrocarbons (PAHs) transformation. On the other hand, anaerobic incubation facilitated the selection of dechlorinating species, including Dehalococcoides mccartyi, involved in PCB reduction. This study significantly contributes to our understanding of the diversity, dynamics, and adaptation of the bacterial community in the hydrocarbon-contaminated marine sediment from one sampling point of the Mar Piccolo basin, particularly in response to stressful conditions. Furthermore, the establishment of consortia with biodegradation and biotransformation capabilities represents a substantial advancement in addressing the challenge of restoring polluted sites, including marine sediments, thus contributing to expanding the toolkit for effective bioremediation strategies.

4.
Chemosphere ; 338: 139467, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437617

RESUMO

Subsurface co-contamination by multiple pollutants can be challenging for the design of bioremediation strategies since it may require promoting different and often antagonistic degradation pathways. Here, we investigated the simultaneous degradation of toluene and chloroform (CF) in a continuous-flow anaerobic bioelectrochemical reactor. As a result, 47 µmol L-1 d-1 of toluene and 60 µmol L-1 d-1 of CF were concurrently removed, when the anode was polarized at +0.4 V vs. Standard Hydrogen Electrode (SHE). Analysis of the microbial community structure and key functional genes allowed to identify the involved degradation pathways. Interestingly, when acetate was supplied along with toluene, to simulate the impact of a readily biodegradable substrate on process performance, toluene degradation was adversely affected, likely due to competitive inhibition effects. Overall, this study proved the efficacy of the developed bioelectrochemical system in simultaneously treating multiple groundwater contaminants, paving the way for the application in real-world scenarios.


Assuntos
Água Subterrânea , Microbiota , Poluentes Químicos da Água , Biodegradação Ambiental , Tolueno/química , Clorofórmio , Anaerobiose , Água Subterrânea/química , Poluentes Químicos da Água/química
5.
Bioengineering (Basel) ; 10(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37106628

RESUMO

Anaerobic bioremediation is a relevant process in the management of sites contaminated by petroleum hydrocarbons. Recently, interspecies electron transfer processes mediated by conductive minerals or particles have been proposed as mechanisms through which microbial species within a community share reducing equivalents to drive the syntrophic degradation of organic substrates, including hydrocarbons. Here, a microcosm study was set up to investigate the effect of different electrically conductive materials (ECMs) in enhancing the anaerobic biodegradation of hydrocarbons in historically contaminated soil. The results of a comprehensive suite of chemical and microbiological analyses evidenced that supplementing the soil with (5% w/w) magnetite nanoparticles or biochar particles is an effective strategy to accelerate the removal of selected hydrocarbons. In particular, in microcosms supplemented with ECMs, the removal of total petroleum hydrocarbons was enhanced by up to 50% relative to unamended controls. However, chemical analyses suggested that only a partial bioconversion of contaminants occurred and that longer treatment times would have probably been required to drive the biodegradation process to completion. On the other hand, biomolecular analyses confirmed the presence of several microorganisms and functional genes likely involved in hydrocarbon degradation. Furthermore, the selective enrichment of known electroactive bacteria (i.e., Geobacter and Geothrix) in microcosms amended with ECMs, clearly pointed to a possible role of DIET (Diet Interspecies Electron Transfer) processes in the observed removal of contaminants.

6.
Sci Total Environ ; 850: 157919, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964739

RESUMO

Biodegradation of aromatic hydrocarbons in anoxic contaminated environments is typically limited by the lack of bioavailable electron acceptors. Microbial electrochemical technologies (METs) are able to provide a virtually inexhaustible electron acceptor in the form of a solid electrode. Recently, we provided first experimental evidence for the syntrophic degradation of toluene in a continuous-flow bioelectrochemical reactor known as the "bioelectric well". Herein, we further analyzed the structure and function of the electroactive toluene-degrading microbiome using a suite of chemical, electrochemical, phylogenetic, proteomic, and functional gene-based analyses. The bioelectric well removed 83 ± 7 % of the toluene from the influent with a coulombic efficiency of 84 %. Cyclic voltammetry allowed to identify the formal potentials of four putative electron transfer sites, which ranged from -0.2 V to +0.1 V vs. SHE, consistent with outer membrane c-type cytochromes and pili of electroactive Geobacter species. The biofilm colonizing the surface of the anode was indeed highly enriched in Geobacter species. On the other hand, the planktonic communities thriving in the bulk of the reactor harbored aromatic hydrocarbons degraders and fermentative propionate-producing microorganisms, as revealed by phylogenetic and proteomic analyses. Most likely, propionate, acetate or other VFAs produced in the bulk liquid from the degradation of toluene were utilized as substrates by the electroactive biofilm. Interestingly, key-functional genes related to the degradation of toluene were found both in the biofilm and in the planktonic communities. Taken as a whole, the herein reported results highlight the importance of applying a comprehensive suite of techniques to unravel the complex cooperative metabolisms occurring in METs.


Assuntos
Geobacter , Hidrocarbonetos Aromáticos , Acetatos/metabolismo , Biofilmes , Citocromos/metabolismo , Eletrodos , Geobacter/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Filogenia , Propionatos/metabolismo , Proteômica , Tolueno/metabolismo
7.
Front Microbiol ; 13: 951911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923400

RESUMO

Chlorinated solvents still represent an environmental concern that requires sustainable and innovative bioremediation strategies. This study describes the microbiome composition of a novel bioelectrochemical system (BES) based on sequential reductive/oxidative dechlorination for complete perchloroethylene (PCE) removal occurring in two separate but sequential chambers. The BES has been tested under various feeding compositions [i.e., anaerobic mineral medium (MM), synthetic groundwater (SG), and real groundwater (RG)] differing in presence of sulfate, nitrate, and iron (III). In addition, the main biomarkers of the dechlorination process have been monitored in the system under various conditions. Among them, Dehalococcoides mccartyi 16S rRNA and reductive dehalogenase genes (tceA, bvcA, and vcrA) involved in anaerobic dechlorination have been quantified. The etnE and etnC genes involved in aerobic dechlorination have also been quantified. The feeding composition affected the microbiome, in particular when the BES was fed with RG. Sulfuricurvum, enriched in the reductive compartment, operated with MM and SG, suggesting complex interactions in the sulfur cycle mostly including sulfur oxidation occurring at the anodic counter electrode (MM) or coupled to nitrate reduction (SG). Moreover, the known Mycobacterium responsible for natural attenuation of VC by aerobic degradation was found abundant in the oxidative compartment fed with RG, which was in line with the high VC removal observed (92 ± 2%). D. mccartyi was observed in all the tested conditions ranging from 8.78E + 06 (with RG) to 2.35E + 07 (with MM) 16S rRNA gene copies/L. tceA was found as the most abundant reductive dehalogenase gene in all the conditions explored (up to 2.46 E + 07 gene copies/L in MM). The microbiome dynamics and the occurrence of biomarkers of dechlorination, along with the kinetic performance of the system under various feeding conditions, suggested promising implications for the scale-up of the BES, which couples reductive with oxidative dechlorination to ensure the complete removal of highly chlorinated ethylene and mobile low-chlorinated by-products.

8.
Sci Total Environ ; 845: 157325, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839884

RESUMO

Electrobioremediation technologies hold considerable potential for the treatment of soils contaminated by petroleum hydrocarbons (PH), since they allow stimulating biodegradation processes with no need for subsurface chemicals injection and with little to no energy consumption. Here, a microbial electrochemical snorkel (MES) was applied for the treatment of a soil contaminated by hydrocarbons. The MES consists of direct coupling of a microbial anode with a cathode, being a single conductive, non-polarized material positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated soil) and the oxic zone (the overlying oxygenated water). Soil was also supplemented with electrically conductive particles of biochar as a strategy to construct a conductive network with microbes in the soil matrix, thus extending the radius of influence of the snorkel. The results of a comprehensive suite of chemical, microbiological and ecotoxicological analyses evidenced that biochar addition, rather than the presence of a snorkel, was the determining factor in accelerating PH removal from contaminated soils, possibly accelerating syntrophic and/or cooperative metabolisms involved in the degradation of PH. The enhancement of biodegradation was mirrored by an increased abundance of anaerobic and aerobic microorganisms known to be involved in the degradation of PH and related functional genes. Plant ecotoxicity assays confirmed a reduction of soils toxicity in treatments receiving electrically conductive biochar.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos/análise , Petróleo/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
10.
Microorganisms ; 10(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35056550

RESUMO

Towards chlorinated solvents, the effectiveness of the remediation strategy can be improved by combining a biological approach (e.g., anaerobic reductive dechlorination) with chemical/physical treatments (e.g., adsorption). A coupled adsorption and biodegradation (CAB) process for trichloroethylene (TCE) removal is proposed in a biofilm-biochar reactor (BBR) to assess whether biochar from pine wood (PWB) can support a dechlorinating biofilm by combining the TCE (100 µM) adsorption. The BBR operated for eight months in parallel with a biofilm reactor (BR)-no PWB (biological process alone), and with an abiotic biochar reactor (ABR)-no dechlorinating biofilm (only an adsorption mechanism). Two flow rates were investigated. Compared to the BR, which resulted in a TCE removal of 86.9 ± 11.9% and 78.73 ± 19.79%, the BBR demonstrated that PWB effectively adsorbs TCE and slows down the release of its intermediates. The elimination of TCE was quantitative, with 99.61 ± 0.79% and 99.87 ± 0.51% TCE removal. Interestingly, the biomarker of the reductive dechlorination process, Dehalococcoides mccartyi, was found in the BRR (9.2 × 105 16S rRNA gene copies/g), together with the specific genes tceA, bvcA, and vcrA (8.16 × 106, 1.28 × 105, and 8.01 × 103 gene copies/g, respectively). This study suggests the feasibility of biochar to support the reductive dechlorination of D. mccartyi, opening new frontiers for field-scale applications.

11.
Front Microbiol ; 12: 747670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659183

RESUMO

Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players' role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 µeq/Ld) and TCE/Cr(VI) (146±2 µeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g-1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g-1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms.

12.
Methods Mol Biol ; 2246: 129-140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33576987

RESUMO

CARD-FISH technique allows us to increase microbial cell detection compared to traditional FISH assays. Specific nonfluorescent oligonucleotide probes targeting 16S rRNA genes are employed and are chemically activated by the binding of tyramide molecules, with the latter able to generate a cascade of fluorescence signals, improving sensitivity and reducing background noise. The technique has been successfully applied for the detection of microorganisms in different environmental matrices and under different growth conditions (including those where cells are characterized by low physiological activity and low ribosome content). This chapter presents a straightforward procedure to execute CARD-FISH analysis, from sample preparation and fixation, to microscopic visualization, along with relevant technical notes.


Assuntos
Hibridização in Situ Fluorescente/métodos , Bactérias/genética , Catálise , Fluorescência , Sondas de Oligonucleotídeos/genética , RNA Ribossômico 16S/genética
13.
ISME J ; 15(6): 1794-1809, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33479489

RESUMO

Microbial communities involving dehalogenating bacteria assist in bioremediation of areas contaminated with halocarbons. To understand molecular interactions between dehalogenating bacteria, we co-cultured Sulfurospirillum multivorans, dechlorinating tetrachloroethene (PCE) to cis-1,2-dichloroethene (cDCE), and Dehalococcoides mccartyi strains BTF08 or 195, dehalogenating PCE to ethene. The co-cultures were cultivated with lactate as electron donor. In co-cultures, the bacterial cells formed aggregates and D. mccartyi established an unusual, barrel-like morphology. An extracellular matrix surrounding bacterial cells in the aggregates enhanced cell-to-cell contact. PCE was dehalogenated to ethene at least three times faster in the co-culture. The dehalogenation was carried out via PceA of S. multivorans, and PteA (a recently described PCE dehalogenase) and VcrA of D. mccartyi BTF08, as supported by protein abundance. The co-culture was not dependent on exogenous hydrogen and acetate, suggesting a syntrophic relationship in which the obligate hydrogen consumer D. mccartyi consumes hydrogen and acetate produced by S. multivorans. The cobamide cofactor of the reductive dehalogenase-mandatory for D. mccartyi-was also produced by S. multivorans. D. mccartyi strain 195 dechlorinated cDCE in the presence of norpseudo-B12 produced by S. multivorans, but D. mccartyi strain BTF08 depended on an exogenous lower cobamide ligand. This observation is important for bioremediation, since cofactor supply in the environment might be a limiting factor for PCE dehalogenation to ethene, described for D. mccartyi exclusively. The findings from this co-culture give new insights into aggregate formation and the physiology of D. mccartyi within a bacterial community.


Assuntos
Chloroflexi , Tetracloroetileno , Biodegradação Ambiental , Campylobacteraceae , Chloroflexi/genética , Técnicas de Cocultura , Dehalococcoides , Etilenos
14.
N Biotechnol ; 56: 96-102, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881285

RESUMO

Marine sediments may represent a sink of persistent organic pollutants including polychlorinated biphenyls (PCBs), toxic compounds prone to reductive or oxidative biodegradation pathways depending on the degree of chlorination and the positions of the chlorine atoms on the biphenyl rings. Superficial marine sediments can be subjected to episodic sediment resuspension by boat traffic and wind action causing the exposure of the underlying anaerobic layer to oxygen. Under these dynamic conditions, a deeper knowledge of the adaptation capability of the autochthonous microbial communities towards severe changes of the reaction environment is required. Insights into the metabolic potential of sediment community members may contribute greatly to the definition of efficient and reliable in situ bioremediation strategies. In this study, an anaerobic PCB-dechlorinating microbial consortium, developed from the chronically polluted marine sediment of Mar Piccolo (Taranto, Italy), was used to evaluate the response of the sediment microbiome to the imposition of aerobic conditions after prolonged anaerobic incubation. Compared to the anaerobic control, a dramatic change in microbiome composition, with a marked increase of Alphaproteobacteria of up to 39.2 % of total operational taxonomic units (OTUs) was revealed by high-throughput 16S rRNA gene sequencing. Accordingly, a decrement of low chlorinated PCBs (up to 58.3 ±â€¯7.5 % for PCB 18) and the concomitant appearance of genes coding for PCB-degrading biphenyl dioxygenase (bph) were observed at the end of the aerobic incubation, suggesting the occurrence of oxidative PCB biodegradation processes.


Assuntos
Alphaproteobacteria/metabolismo , Oxigênio/metabolismo , Bifenilos Policlorados/metabolismo , Sedimentos Geológicos/microbiologia , Estresse Oxidativo , Microbiologia do Solo
15.
Front Microbiol ; 9: 1664, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087670

RESUMO

This study investigated the organohalide-respiring bacteria (OHRB) and the supporting microbial populations operating in a pilot scale plant employing poly-3-hydroxybutyrate (PHB), a biodegradable polymer produced by bacteria from waste streams, for the in situ bioremediation of groundwater contaminated by chlorinated solvents. The bioremediation was performed in ground treatment units, including PHB reactors as slow release source of electron donors, where groundwater extracted from the wells flows through before the re-infiltration to the low permeability zones of the aquifer. The coupling of the biological treatment with groundwater recirculation allowed to drastically reducing the contamination level and the remediation time by efficiently stimulating the growth of autochthonous OHRB and enhancing the mobilization of the pollutants. Quantitative PCR performed along the external treatment unit showed that the PHB reactor may efficiently act as an external incubator to growing Dehalococcoides mccartyi, known to be capable of fully converting chlorinated ethenes to innocuous end-products. The slow release source of electron donors for the bioremediation process allowed the establishment of a stable population of D. mccartyi, mainly carrying bvcA and vcrA genes which are implicated in the metabolic conversion of vinyl chloride to harmless ethene. Next generation sequencing was performed to analyze the phylogenetic diversity of the groundwater microbiome before and after the bioremediation treatment and allowed the identification of the microorganisms working closely with organohalide-respiring bacteria.

16.
Water Res ; 127: 11-21, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29020640

RESUMO

Marine sediments represent an important sink for a number of anthropogenic organic contaminants, including petroleum hydrocarbons following an accidental oil spill. Degradation of these compounds largely depends on the activity of sedimentary microbial communities linked to biogeochemical cycles, in which abundant elements such as iron and sulfur are shuttled between their oxidized and reduced forms. Here we show that introduction of a small electrically conductive graphite rod ("the electrochemical snorkel") into an oil-contaminated River Tyne (UK) sediment, so as to create an electrochemical connection between the anoxic contaminated sediment and the oxygenated overlying water, has a large impact on the rate of metabolic reactions taking place in the bulk sediment. The electrochemical snorkel accelerated sulfate reduction processes driven by organic contaminant oxidation and suppressed competitive methane-producing reactions. The application of a comprehensive suite of chemical, spectroscopic, biomolecular and thermodynamic analyses suggested that the snorkel served as a scavenger of toxic sulfide via a redox interaction with the iron cycle. Taken as a whole, the results of this work highlight a new strategy for controlling biological processes, such as bioremediation, through the manipulation of the electron flows in contaminated sediments.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/química , Poluição por Petróleo , Petróleo/metabolismo , Rios/química , Sedimentos Geológicos/microbiologia , Hidrocarbonetos , Oxirredução , Rios/microbiologia , Reino Unido
17.
FEMS Microbiol Ecol ; 93(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040506

RESUMO

In this study, six PCE-to-ethene dechlorinating cultures, fed with a fermentable substrate (lactate) or hydrogen as electron donor, were obtained from PCB and PCE dechlorinating microcosms constructed with PCB-contaminated marine sediments. A novel Chloroflexi member (OTU-DIS1) affiliated to Dehalococcoidales Incertae Sedis, only distantly related to known dechlorinating bacteria, dominated the enrichment cultures (up to 86% of total OTUs). Sulfate-, thiosulfate- and sulfur-reducing bacteria affiliated to genera Desulfobacter, Dethiosulfatibacter and Desulfuromusa were also found to lesser extent. Remarkably, tceA, vcrA and the bifunctional PCE/PCB dehalogenase genes pcbA1, pcbA4 and pcbA5 were found in all dechlorinating microbial enrichments indicating the coexistence of different Dehalococcoides mccartyi strains. The reductive dechlorination rate in each culture remained unvaried over long-term operation (≈ 30 months) and ranged between 0.85 and 0.97 mmol Cl-1 released L-1 d-1 in the lactate-fed microbial enrichments and between 0.66 and 0.85 mmol Cl-1 released L-1 d-1 in the H2-fed microbial enrichments. Overall, this study highlights the presence of yet unexplored biodiversity in PCBs contaminated marine sediments and indicates these environments as promising sources of novel organohalide-respiring bacteria.


Assuntos
Biodegradação Ambiental , Chloroflexi/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Bifenilos Policlorados/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Tiossulfatos/metabolismo , Biodiversidade , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Etilenos/biossíntese , Halogenação/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
18.
Front Microbiol ; 8: 952, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611751

RESUMO

The composition and metabolic traits of the microbial communities acting in an innovative bioelectrochemical system were here investigated. The system, known as Oil Spill Snorkel, was recently developed to stimulate the oxidative biodegradation of petroleum hydrocarbons in anoxic marine sediments. Next Generation Sequencing was used to describe the microbiome of the bulk sediment and of the biofilm growing attached to the surface of the electrode. The analysis revealed that sulfur cycling primarily drives the microbial metabolic activities occurring in the bioelectrochemical system. In the anoxic zone of the contaminated marine sediment, petroleum hydrocarbon degradation occurred under sulfate-reducing conditions and was lead by different families of Desulfobacterales (46% of total OTUs). Remarkably, the occurrence of filamentous Desulfubulbaceae, known to be capable to vehicle electrons deriving from sulfide oxidation to oxygen serving as a spatially distant electron acceptor, was demonstrated. Differently from the sediment, which was mostly colonized by Deltaproteobacteria, the biofilm at the anode hosted, at high extent, members of Alphaproteobacteria (59%) mostly affiliated to Rhodospirillaceae family (33%) and including several known sulfur- and sulfide-oxidizing genera. Overall, we showed the occurrence in the system of a variety of electroactive microorganisms able to sustain the contaminant biodegradation alone or by means of an external conductive support through the establishment of a bioelectrochemical connection between two spatially separated redox zones and the preservation of an efficient sulfur cycling.

19.
N Biotechnol ; 37(Pt A): 60-68, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27903429

RESUMO

A pilot-scale study aiming to evaluate the potential use of poly-3-hydroxy-butyrate (PHB) as an electron donor source for in situ bioremediation of chlorinated hydrocarbons in groundwater was conducted. Compared with commercially available electron donors, PHB offers a restricted fermentation pathway (i.e., through acetic acid and molecular hydrogen) by avoiding the formation of any residual carbon that could potentially spoil groundwater quality. The pilot study was carried out at an industrial site in Italy, heavily contaminated by different chlorinated aliphatic hydrocarbons (CAHs). Prior to field testing, PHB was experimentally verified as a suitable electron donor for biological reductive dechlorination processes at the investigated site by microcosm studies carried out on site aquifer material and measuring the quantitative transformation of detected CAHs to ethene. Owing to the complex geological characteristics of the aquifer, the use of a groundwater circulation well (GCW) was identified as a potential strategy to enable effective delivery and distribution of electron donors in less permeable layers and to mobilise contaminants. A 3-screened, 30-m-deep GCW coupled with an external treatment unit was installed at the site. The effect of PHB fermentation products on the in situ reductive dechlorination processes were evaluated by quantitative real-time polymerase chain reaction (qPCR). The results from the first 4 months of operation clearly demonstrated that the PHB fermentation products were effectively delivered to the aquifer and positively influenced the biological dechlorination activity. Indeed, an increased abundance of Dehalococcoides mccartyi (up to 6.6 fold) and reduced CAH concentrations at the installed monitoring wells were observed.


Assuntos
Biodegradação Ambiental , Poli-Hidroxialcanoatos/metabolismo , Poluentes Químicos da Água/metabolismo , Reatores Biológicos/microbiologia , Biotecnologia , Carbono/metabolismo , Chloroflexi/metabolismo , Fermentação , Água Subterrânea/química , Hidrocarbonetos Clorados/metabolismo , Hidroxibutiratos/metabolismo , Itália , Projetos Piloto , Poliésteres/metabolismo , Purificação da Água/instrumentação
20.
Front Microbiol ; 7: 1502, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708637

RESUMO

The toxicity of polychlorinated biphenyls (PCB) can be efficiently reduced in contaminated marine sediments through the reductive dechlorination (RD) process lead by anaerobic organohalide bacteria. Although the process has been extensively investigated on PCB-spiked sediments, the knowledge on the identity and metabolic potential of PCB-dechlorinating microorganisms in real contaminated matrix is still limited. Aim of this study was to explore the composition and the dynamics of the microbial communities of the marine sediment collected from one of the largest Sites of National Interest (SIN) in Italy (Mar Piccolo, Taranto) under conditions promoting the PCBs RD. A long-term microcosm study revealed that autochthonous bacteria were able to sustain the PCB dechlorination at a high extent and the successive addition of an external fermentable organic substrate (lactate) caused the further depletion of the high-chlorinated PCBs (up to 70%). Next Generation Sequencing was used to describe the core microbiome of the marine sediment and to follow the changes caused by the treatments. OTUs affiliated to sulfur-oxidizing ε-proteobacteria, Sulfurovum, and Sulfurimonas, were predominant in the original sediment and increased up to 60% of total OTUs after lactate addition. Other OTUs detected in the sediment were affiliated to sulfate reducing (δ-proteobacteria) and to organohalide respiring bacteria within Chloroflexi phylum mainly belonging to Dehalococcoidia class. Among others, Dehalococcoides mccartyi was enriched during the treatments even though the screening of the specific reductive dehalogenase genes revealed the occurrence of undescribed strains, which deserve further investigations. Overall, this study highlighted the potential of members of Dehalococcoidia class in reducing the contamination level of the marine sediment from Mar Piccolo with relevant implications on the selection of sustainable bioremediation strategies to clean-up the site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...